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SUMMARY

This article introduces a new semi-implicit, staggered finite volume scheme on unstructured meshes for
the modelling of rapidly varied shallow water flows. Rapidly varied flows occur in the inundation of dry
land during flooding situations. They typically involve bores and hydraulic jumps after obstacles such as
road banks. Near such sudden flow transitions, the grid resolution is often low compared with the gradients
of the bathymetry. Locally the hydrostatic pressure assumption may become invalid. In these situations, it
is crucial to apply the correct conservation properties to obtain accurate results. An important feature of
this scheme is therefore its ability to conserve momentum locally or, by choice, preserve constant energy
head along a streamline. This is achieved using a special interpolation method and control volumes for
momentum.

The efficiency of inundation calculations with locally very high velocities, and in the case of unstructured
meshes locally very small grid distances, is severely hampered by the Courant condition. This article
provides a solution in the form of a locally implicit time integration for the advective terms that allows
for an explicit calculation in most of the domain, while maintaining unconditional stability by implicit
calculations only where necessary.

The complex geometry of flooded urban areas asks for the flexibility of unstructured meshes. The efficient
calculation of the pressure gradient in this, and other semi-implicit staggered schemes, requires, however,
an orthogonality condition to be put on the grid. In this article a simple method is introduced to generate
unstructured hybrid meshes that fulfil this requirement. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The numerical modelling of rapidly varied shallow water flows typically found in flooding situations
after, for example, dike breaks or tsunamis is a complex and computationally demanding task. To
enable the simulation of flooding in a large urban area, including all the details at the street level,
a very efficient scheme is needed. The complex geometry asks for the flexibility of unstructured
grids. In this paper we will show how the techniques of the staggered Cartesian conservative
scheme of [1] can be extended for the application to unstructured grids. This scheme is able to deal
accurately with large gradients in the flow near steep bottom gradients and in hydraulic jumps and
bores. Here the conservation properties of the scheme are important to obtain physically realistic
solutions. In case of relatively steep gradients caused by a lack of grid resolution, a much faster
convergence can be achieved if the right conservation properties are observed.

Many shallow water models for large-scale simulations are based on the application of staggered
grids. They provide efficiency and accuracy for sub-critical hydrostatic flows, in particular, in
combination with A.D.I. [2, 3] or semi-implicit [4, 5] time integration. Their unconditional stability
allows deep water to be simulated next to shallow water without severe time step restrictions, unlike
explicit shallow water equation schemes where the stability is dependent on the wave celerity
and therefore on the depth. In [6] it is shown how semi-implicit unstructured staggered schemes
can maintain their unconditional stability in the presence of the Coriolis force. The scheme of
Casulli [4] combines a semi-implicit time integration of the equations with a semi-Lagrangian
approach for the advection term. Such an approach, however, is unable to provide the desired
momentum conservation. In [1] it is shown how conservation can be achieved by combining the
semi-implicit scheme with an advection scheme with a special choice for the discretization of the
advective velocity based on the local momentum balance.

Many shock-capturing methods, especially for unstructured grids, are based on approximate
Riemann solvers or Godunov-type methods on collocated grids [7, 8]. In general, they lack the
efficiency of semi-implicit methods on staggered grids. A locally conservative scheme for unstruc-
tured staggered grids is given by Perot [9]. For local momentum conservation of a scheme, a
local balance of the full momentum vector must be derived. The full momentum vector is not
directly available in staggered schemes, only face normal velocities are stored, and in the case of
unstructured meshes it is also not possible to treat the velocity components independently. This
poses a general difficulty in deriving unstructured staggered schemes that conserve momentum
locally. In [9] this is done by showing equivalence to a cell-based balance using a special velocity
interpolation. Another unstructured staggered method is given in [10] in the context of the so-called
Mach-uniform methods. Although not provably conservative, its results appear to give the desired
conservation and shock-capturing properties. In this paper it will be shown how the advection
scheme of both methods can be combined with a semi-implicit time integration.

The semi-implicitly discretized equations can be solved in an efficient way for both structured and
unstructured grids, as long as they are orthogonal. Unstructured orthogonal grids are unstructured
grids in which each line segment connecting the cell centres of two adjacent cells has a non-empty
and orthogonal intersection with the shared face of the two cells [11]. Triangular grids with only
acute triangles satisfy this condition, but the generation of such grids is far from trivial [12]. For
this reason, this paper presents an alternative method for generating orthogonal grids with the same
flexibility to accurately represent the boundaries of the flow domain.

In Section 2 we first briefly review how the shallow water equations are solved following Casulli’s
method. In Section 3 we discuss the conservation properties that play a role in the modelling
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of rapidly varied flows. Section 4 presents two discretizations of the depth-integrated momentum
equation based on [9, 10]. Further, it will be shown how they can be combined with the non-
conservative formulation used in Casulli’s scheme. In Section 5 we demonstrate how the advection
scheme can be made unconditionally stable by applying a locally implicit time integration scheme.
In Section 6 we present a modified cut-cell technique that produces grids that are unstructured along
the boundaries and Cartesian in the interior. It satisfies the orthogonality condition of the numerical
scheme and combines the advantages of Cartesian grids with the flexibility of unstructured grids.
In Section 7 some test cases are given that demonstrate both the shock-capturing capabilities of
the numerical scheme and the efficacy of the hybrid grid technique.

2. SEMI-IMPLICIT METHOD FOR THE SHALLOW WATER EQUATIONS

This section briefly outlines the semi-implicit discretization of the shallow water equations as
in [4] on two-dimensional unstructured meshes (see also [11]). The two-dimensional shallow water
equations in non-conservative form are given by
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where � is the water level above a plane of reference, h the total water depth, u and v are the
depth-averaged velocities in, respectively, x- and y-directions and c f is the dimensionless bottom
friction coefficient. Furthermore, we define a downward measured bottom level b, so that h=�+b.

We consider a two-dimensional unstructured grid consisting of cells that are arbitrary polygons.
The flow variables are stored in a staggered setting to avoid spurious pressure modes. The water
levels are stored in the cell centres and the normal component of the velocity in the middle of each
cell face. For a fixed bottom topography, we may replace the time derivative of the water depth h
in the mass continuity equation (1a) with that of the water level �. A finite volume discretization
in cell c then reads

Ac
d�c
dt

+ ∑
k∈Sc

± f
c l f

∗h f u f =0 (2)

where Ac is the cell area, and Sc is the set of sides of cell c. For each k∈ Sc, l f denotes the length

of the side, and u f the face normal component of the velocity. ± f
c is +1 if the face normal is

pointing outward of cell c and −1 if pointing inward. The water height ∗h f at the face is defined as

∗h f =
{
min(bcL,bcR)+hcL for u f >0

min(bcL,bcR)+hcR for u f >0
(3)
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Thus, the water height used in the outward fluxes of a cell is at most that of the cell itself. This
choice guarantees a positive water height in a cell c if for all its faces f with outward going flux
we have

�tl f |u f |<Ac (4)

This condition is independent of the water height itself, thus avoiding very strict time step restric-
tions for very shallow water layers.

The momentum equation (1b) at face f is discretized by

du f

dt
+g

�cR −�cL
�x f

+Adv(u f )+c f
u f ‖u f ‖

h̄ f
=0 (5)

Adv(u f ) is the discretization of the advection terms in (1b) that are described in the following
two sections. �x f is the length of the line segment between the centres of the cells cL and cR
that lies on either side of f . In an orthogonal grid, this line segment is by definition orthogonal
to the cell face and thus in the direction of the face normal. This allows for a simple calcula-
tion of the hydrostatic pressure gradient out of the water levels in the two adjacent cell centres
only (Figure 1). The transversal component of the velocity vector in f , needed for the compu-
tation of ‖u f ‖, follows from the velocity reconstruction of the advection discretization described
below.

Figure 1. The geometric quantities are l f length of a face f , and �x f distance between its adjacent cell
centres, used in Equations (2) and (5). The orientation of the face normal at face f is such that it is

pointing out of cell cL and into cR; hence, we use ± f
cL =1 and ± f

cR =−1.
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After time integration of (5) by the �-method, we obtain

un+1
f −unf

�t
+g

�n+�
cR −�n+�

cL

�x f
+Adv(un+∗

f )+c f
‖unf ‖un+1

f

h̄ f
= 0

�n+� = (1−�)�n+��n+1

(6)

Given the velocities and water heights at the old time level, this equation relates the new velocity
un+1
f to the new water heights �n+1

cL and �n+1
cR at time tn+1. Following [4] we substitute this

expression for un+1
f in the time-integrated version of (2),

Ac
�n+1
c −�nc

�t
+ ∑

k∈Sc
± f

c l f
∗hnf u

n+�
f =0 (7)

The resulting equation relates the new water height �n+1
c in a cell c to the new water heights

of its adjacent cells. The complete linear system of equations with water heights as unknowns
is symmetric and positive definite and can therefore be solved efficiently by means of, e.g. the
conjugate gradient method. Finally, the new velocities are computed substituting the new water
heights in (6).

The semi-implicit time integration makes the stability of the scheme independent of the celerity
[4]. An explicit treatment of the advection term Adv(u f ), however, still imposes a Courant condi-
tion, restricting the time step in the presence of large velocities or small cells anywhere in the
domain. An unconditionally stable scheme can be derived with a semi-Lagrangian approach as
in [4]. A disadvantage of such schemes is that they do not provide the desired conservation of
momentum. A conservative advection scheme will be derived in the following two sections. In
Section 5 it will be shown how this scheme can be made unconditionally stable.

3. CONSERVATION PRINCIPLES IN RAPIDLY VARIED FLOWS

The two-dimensional shallow water equations are derived from the incompressible Navier–Stokes
equations using the hydrostatic pressure assumption. At local discontinuities, this assumption
may no longer be valid. Here the equations also no longer have a unique solution. An accurate
computation would require a three-dimensional non-hydrostatic model. However, the applications
of proper conservation laws based on physical considerations are often sufficient to derive large-
scale properties, such as shock speeds and energy losses. The conservation laws that play a role
are the mass balance (1a), which should always be maintained, and conservation of momentum
and energy head.

3.1. Conservation of momentum

From the hydrostatic pressure assumption

�p
�z

=�g (8)

(and constant density) it follows that the horizontal pressure gradient is constant over the vertical.
The pressure gradient term in the depth-integrated momentum balance can therefore be expressed
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as h times the gradient of the water surface:

�q
�t

+∇·(qu)+gh∇�=0 (9)

For a non-continuous water surface, however, this expression is not well defined, since the weak
solution depends on the value of h at the discontinuity. Here the following jump conditions have
to be applied

s�h=�qn (10a)

s�qn =�F, F= 1
2 gh

2+qnun (10b)

where s is the shock speed, and qn and un are the vectors q and u projected in the direction
normal to the shock, respectively. They enforce conservation of mass and momentum, respectively,
across the jump. The pressure term in the momentum balance can be derived again integrating the
pressure gradient over the vertical. Here it is important, however, to take in account the pressure
gradient over the vertical interface at the front of the bore.

To ensure satisfaction of the momentum jump condition (10b) many numerical schemes are
based on the following momentum equation:

�q
�t

+∇·(qu)+ 1

2
g∇h2=−gh∇b (11)

in which the pressure gradient term is split into a flux term and a ‘bottom slope force’ as a
source term. Numerical solutions of a finite volume discretization of this equation converge to
a weak solution that automatically satisfies the jump condition. The splitting of the pressure
gradient term, however, creates its own problems as the two terms do not represent independent
physical phenomena. If for instance one applies a higher-order interpolation for the flux 1

2 gh
2

at the boundary of a control volume, it no longer matches the bottom slope term. This easily leads
to artificial flow near a bottom gradient in water initially at rest [13]. Moreover, the bottom slope
term in (11) still has an ambiguity for the value of h at discontinuities in the bottom topography.

To arrive at physically realistic solutions in rapidly varied flows with steep bottom gradients, it
is important that the jump condition (10b) is applied only as an algebraic equation at the shock
itself and that the differential equation (9) is applied to the rest of the domain. In the following a
discretization it is called momentum conservative if it is consistent with (9) and satisfies the jump
condition (10b) across a discontinuity in the water surface.

3.2. Constancy of energy head

Bernoulli’s equation gives that along a streamline in a steady flow

�
��

(
�gz+ p+ 1

2
�u2

)
=0 (12)

Assuming hydrostatic pressure, it follows that the energy head

H =�+ u2

2
g (13)

is constant along a streamline in a steady shallow water flow.
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The basic principles of conservation of momentum and energy head are used in channel
hydraulics to calculate the flow, especially near sudden expansions or contractions. In a sudden
channel expansion, for instance the flow after a weir, the application of momentum conservation
leads to a loss of energy head. This conforms with the fact that energy is dissipated in turbu-
lent flow right after the expansion. Hence, by applying momentum conservation and comparing
the energy head upstream and downstream of the transition, one can calculate the energy head
loss.

On the other hand, momentum conservation based on (8) in sudden channel contractions would
lead to an increase of energy, which is an unrealistic assumption from a physical point of view.
In the flow over a sudden rise in the bottom level, the streamlines are almost vertical; hence, the
hydrostatic pressure assumption is no longer valid. Unknown forces on the bottom obstacle have
to be taken into account. As long as these forces are normal to the flow direction, no work is
done upon the flow, and the energy balance is still valid. Hence, in this case it is better to apply
the energy head balance. The same should be done for flow contractions, in general, perhaps with
some additional head losses, to avoid unrealistic energy increases.

It is to be noted that smooth solutions of the shallow water equations in non-conservative
form (1) always satisfy both momentum conservation as in (9) and constancy of energy head along
streamlines. For sudden changes in bathymetry or water level, however, it is better to go back to
the elementary principles of the physical balances from open channel hydraulics. If the changes
are sudden relative to the grid size; hence, due to a lack of grid resolution, a numerical scheme
that adheres to these principles will converge faster to a physically realistic solution than a scheme
that is merely consistent with (1).

4. CONSERVATIVE DISCRETIZATION OF THE MOMENTUM BALANCE

In this section a discretization of the momentum equation (9) is derived that satisfies the conser-
vation requirements from the previous section. In a velocity point of the staggered grid only the
face normal component is considered. Thus, momentum equation (9) reduces to

�q·n
�t

+∇·(qu·n)+ghn·∇�=0 (14)

This balance is applied to a control area constructed out of the two adjacent cells next to the
velocity point. The scheme in [1] uses exactly half of both cells, namely the square in between
the two cell centres. This gives us a complete cover of adjacent control areas for the momentum
in both the x- and y-directions (see Figure 2). If the numerical fluxes at the boundary between
adjacent control areas match, the momentum balance in an arbitrary number of adjacent control
areas can be combined such that all internal fluxes cancel. Thus, a local balance is created for the
combined area. This is a necessary condition to prove convergence to a conservative solution by
the Lax–Wendroff theorem [14].

In unstructured staggered grids, things are more complicated. As the velocity components at the
cell faces are in arbitrary direction, the local balances around the velocity points are not independent.
In order to show that a method is locally conservative, one should be able to reconstruct a balance
of the full momentum vector out of the velocity components in an arbitrary region of the grid. For
the scheme of Perot [9], this is accomplished by reconstructing cell-based momentum vectors out
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Figure 2. Control volumes for the momentum in the x-direction (left figure) and the y-direction
(right figure) of the Cartesian scheme.

Figure 3. Control volumes for the momentum at a face in Perot’s scheme (left figure) and
Wenneker’s scheme (right figure).

of the face normal components, so that a local balance can be made by adding the balances for
each cell.

4.1. Cell-centred and face-centred control volumes

The scheme of Perot [9] in fact employs a transformation between face-centred control volumes
and cells. The face-centred control area consists of the rectangle in between the circumcentres
of the two adjacent triangles, similar to the Cartesian case (see the left picture in Figure 3). The
width and height of this rectangle are given by the length of the face and the distance between
the circumcentres. This distance is expressed as the sum of the distance between the left triangle
centre and the face, and the distance between the face and the right triangle centre:

�x f =�xcLf +�xcRf (15)
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A cell-based momentum vector qc is interpolated out of the normal components q f stored at
the cell faces by

Acqc=∑
f

cell
faces

l f �x
c
f q f n f (16)

where Ac is the area of the cell and n f are the normal vectors at the faces. The reconstruction of
the full momentum vector is a first-order interpolation for any polygon-shaped cell with a common
circumcentre. This follows from the following geometrical identity:∑

f
cell
faces

l f �x
c
f n f nTf = AcI (17)

where n f nTf are 2×2 matrices that result from multiplying the normal vectors with their transposed,

and I is the R2 identity matrix. If we make the first-order assumption that the vector field q is
constant in a cell and fill in q f =q·n f =nTf q f at the cell faces, this identity guarantees that the
interpolated cell vector returns the original vector q. The common circumcentre requirement makes
that we can use any triangle and only a restricted class of quadrilaterals, and rectangles among
others.

A local balance can now be reconstructed by adding all Acqc terms of all cells in the balance
area. By combining the contribution of a face to its left and right cells, we can rewrite this into a
sum of contributions of all faces in the area:∑

c
cells

Acqc=∑ f
faces

l f �x
cL
f q f n f +l f �x

cR
f q f n f =∑ f

faces

l f �x f q f n f (18)

where for faces at the boundary of the area there is only a contribution to one side of the face, so
we consider the other �xcf =0. In this way we can indeed see the balance as a sum of contributions
from control areas around the velocity points with area �x f l f .

The other way around it is also possible to reconstruct face normal components a f out of a
given set cell-based vectors ac, by taking the following linear combination of the two adjacent cell
vectors at each face

a f = �xcLf
�x f

acL ·n f +
�xcRf
�x f

acR ·n f (19)

It is now easy to show that again the cell-centred balance corresponds with the momentum balance
obtained by adding the face components, i.e.∑

c
cells

Acac=∑ f
faces

l f �x f a f n f (20)

4.2. Conservative scheme based on Perot’s scheme

The duality between face-centred and cell-centred control volumes is used in Perot’s scheme to
derive a staggered scheme, for which the conservation properties can be expressed in cell-centred
control volumes with full velocity vectors in the same way as for collocated schemes. First we
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write down a very general finite volume discretization Acac of the advection term ∇·qu integrated
over a cell in a conservative collocated scheme. Using Gauss’ theorem, we obtain∫

cell
∇·qu=∑

f
cell
faces

∫
face f

q·n f u≈∑
f

cell
faces

Q f u f = Acac (21)

where Q f is q f ·n f integrated along face f , i.e. the flux going through this face, and u f is the
velocity vector interpolated at face f .

Using (19) we obtain the corresponding expression for the advection integrated over the control
area of each face. In this way, a staggered advection scheme can be derived with a local momentum
balance that is equal to that of the collocated scheme:

�x f l f
dq f

dt
+l f (�x

cL
f acL +�xcRf acR) ·n f =0 (22)

For the discretization of the pressure gradient term, we define the following consistent depth at
the face:

h̃ f = �cL +�cR
2

+ �xcLf
�x

bcL + �xcRf
�x

bcR (23)

so that we obtain the following discretization of (14)

dq f

dt
+
(

�xcLf
�x f

acL + �xcRf
�x f

acR

)
·n f +gh̃ f

�cR −�cL
�x f

=0 (24)

The specific choice of h̃ f gives the most accurate representation of the water volume above the
control area for discontinuities in the bed that are situated exactly at the cell boundaries. As long
as the water surface is smooth, the scheme gives a consistent discretization of the water volume
times a pressure gradient, thus avoiding artificial flow near sharp bottom gradients.

To study the convergence behaviour for discontinuous water surfaces, note that the definition
of h̃ f is independent of the chosen reference level. Therefore in a small region of size � around a
jump in the water level, we may assume b=0+O(�) for a smooth bottom and express h̃ f = 1

2�cL +
1
2�cR +O(�). However, also �cL =hcL +O(�) and �cR =hcR +O(�). This means that the pressure
gradient term in this region can be approximated by

gh̃ f
�cR −�cL

�x f
≈

1
2 gh

2
cR − 1

2 gh
2
cL

�x f
+O(�) (25)

With this approximation of the pressure gradient (24) becomes completely identical to the scheme
of Perot in [9] using a pressure p= 1

2 gh
2. From the conservation properties of this scheme, it

follows that the solutions will converge to a weak solution with the right jump condition as
in (10b). Because in the region our scheme is close to Perot’s pressure gradient, for �→0 also
the solutions of our scheme will converge to the right jump condition. In the rest of the domain
(with smooth water surface), the scheme will give the correct momentum conservative solutions
(assuming a hydrostatic pressure) even for arbitrarily steep or discontinuous beds.
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4.3. Conservative scheme based on Wenneker’s scheme

Another momentum advection scheme for unstructured staggered grids is given in [10]. Instead
of the rectangle between the circumcentres, it considers the two entire triangles at either side of a
face together as the control area for the face. This gives the following scheme:

dq f

dt
+
(
4 faces of the CA∑

k Qk
∗uk

)
·n f +gh̃ f

�cR −�cL
�x f

=0 (26)

where we sum over the four faces around the control area.
Compared with Perot’s scheme it has a different weighting of the contribution to the advection

term of the left and right cells. Introducing the following weighting factors

�cLf = �xcLf
�x f

, �cRf = �xcRf
�x f

for Perot’s scheme (27)

and

�cLf = AcL

AcL +AcR
, �cRf = AcR

AcL +AcR
for Wenneker’s scheme

Both schemes can be expressed in the following general form:

dq f

dt
+
(
�cLf acL +�cRf acR

)
·n f +gh̃ f

�cR −�cL
�x f

=0 (28)

Note that for Wenneker’s scheme the flux through face f itself going out of the upwind cell
cancels against the flux going into the downwind cell. The pressure gradient discretization of [10]
is different than ours, since in [10] centroids instead of circumcentres are used to store water
levels. The water depth h̃ f should be adjusted using the control area of Wenneker’s scheme. We
can again express it in a general form, which is valid for both schemes

h̃ f = �cL +�cR
2

+�cLf bcL +�cRf bcR (29)

For Wenneker’s scheme, there is no proof that it is conservative, but in test cases it shows the right
convergence behaviour towards conservative solutions [10].

4.4. Depth-integrated versus depth-averaged formulation

A problem with the schemes of (24) and (26) is that they are based on depth-integrated velocities q,
whereas the semi-implicit scheme from Section 2 that we wish to employ uses depth-averaged
velocities u. We show, however, that both schemes can be rewritten in u-based schemes. This is
done in the same way; the equivalence between the depth-integrated momentum balance of (9)
and the depth-averaged momentum equation of (1b) can be shown using the mass balance in (1a).

First we introduce the following definition for a depth h̄ f at the face that differs from the depth
h̃ f defined in (29). It uses the weighting of the advection term for both the water surface and the
bed level:

h̄ f =�cLf hcL +�cRf hcR (30)
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This defines the relation between u f and q f = h̄ f u f . The time derivative of q f can now be
split into a contribution from the change in water volume and a contribution from the change in
velocity:

dq f

dt
= �cLf

dhcL
dt

u f +�cRf
dhcR
dt

u f + h̄ f
du f

dt

= −�cLf

∑cL
k ±cL

k Qk

AcL
u f −�cRf

∑cR
k ±cR

k Qk

AcL
u f + h̄ f

du f

dt
(31)

where in the last line we have substituted the discretized mass balance (2) and the summations are
over the faces k of the left and right cells with fluxes:

Qk = lk
∗hkuk (32)

Using the same fluxes, we make the following choice for the cell-based advection terms:

ac=
∑c

k ±c
k Qk

∗uk
Ac

(33)

where ∗uk is a full vector reconstruction of the velocity at face k. It is reconstructed out of the
velocity components from the cell upwind of face k. For Perot’s scheme we use the velocity
reconstruction as in (16), i.e. we reconstruct the velocity out of the three faces, including face k, of
the upwind triangle. For Wenneker’s scheme we use only the other two velocity components and
not face k itself and reconstruct the unique vector that corresponds with those two components.

Substituting (31) and our choice for the advection terms, we arrive at the following scheme:

h̄ f
du f

dt
+�cLf

∑cL
k ±cL

k Qk(
∗uk ·n f −u f )

AcL

+�cRf

∑cR
k ±cR

k Qk(
∗uk ·n f −u f )

AcR
+gh̃ f

�cR −�cL
�x f

=0 (34)

For both schemes, we can now show that the outgoing fluxes, i.e. ±c
k Qk>0, can be omitted without

changing the local momentum balance. For Perot’s scheme, this will be deferred to Appendix A.
For Wenneker’s scheme this is straightforward; for outgoing fluxes one of the two upwind faces is
the central face f itself. Thus for the projection of the vector reconstructed out of the two upwind
velocity components in the normal direction of face f , we have ∗uk ·n f =u f . Furthermore, in
adding the left and right advection contributions the flux through face f itself out of the upwind
cell cancels against the flux going into the downwind cell.

Finally, the u-based scheme that we arrive at is given by

du f

dt
+ �cLf
h̄ f AcL

fluxes
into cL∑

k
cell
faces

±cL
k Qk(

∗uk ·n f −u f )

+ �cRf
h̄ f AcR

fluxes
into cR∑

k
cell
faces

±cR
k Qk(

∗uk ·n f −u f )+g
h̃ f

h̄ f

�cR −�cL
�x f

=0 (35)
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where for Wenneker’s scheme we need only to consider the incoming fluxes for the four faces
around the control area of the two combined triangles; for Perot’s scheme we include the incoming
flux through face f going into the downstream cell.

4.5. Cartesian scheme

The Cartesian scheme presented in [1] is based on the same conservation principles. Also for
this scheme one can show the equivalence with a depth-integrated momentum balance. The local
momentum balance for a face is applied to half of the two adjacent square cells. This is in fact
equal to Perot’s control volume between the two circumcentres. Unlike the unstructured case,
momentum conservation follows directly from the local balances in the two independent covers
of the domain with control areas for both momentum components.

Let ui+1/2, j be the velocity in the x-direction stored in the centre of the face between cell (i, j)
and (i+1, j). The momentum stored in the control area of length �x (the distance between the
cell centres) and width �y is given by

�x�yh̄i+1/2, j ui+1/2, j with h̄i+1/2, j = 1
2 hi, j + 1

2 hi+1, j (36)

The flux through the left side of this control volume is obtained by averaging the fluxes through
the faces at (i− 1

2 , j) and (i+ 1
2 , j)

�yq̄i, j = 1
2 Qi, j−1/2+ 1

2 Qi+1, j−1/2 (37)

and similarly for the flux �yq̄i+1, j through the right side of the control volume and the fluxes
�xqi+1/2, j−1/2 and �xqi+1/2, j+1/2 through the bottom and top of the control volume. The advected
velocity that is transported with these fluxes in the advection term is again the velocity component
stored in the upwind control volume (Figure 4). Following the same procedure as in the previous

Figure 4. Control volume around face (i+ 1
2 , j) consisting of half of cell (i, j) and half of (i+1, j).

Indicated are the fluxes assuming positive flow directions.
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section we can derive a u-based scheme in which the outgoing fluxes have disappeared. Assuming
positive flow direction in both the x- and y-directions, i.e. q̄i+1, j>0 and q̄i+1/2, j+1/2>0 are outgoing
fluxes, the scheme after time integration with the �-scheme looks like:

un+1
i+1/2, j −uni+1/2, j

�t
+ q̄ni, j
h̄ni+1/2, j

uni+1/2, j −uni−1/2, j

�x
+ q̄ni+1/2, j−1/2

h̄ni+1/2, j

uni+1/2, j −uni+1/2, j−1

�y

+g
�n+�
i+1, j −�n+�

i, j

�x
=0 (38)

This is the same as Equation (24) in [1]. Note that although the scheme applies the same control
volumes as Perot’s scheme, the schemes are not the same, as in the Cartesian case we do not need
a complicated velocity reconstruction for the advected velocity component.

4.6. Constant energy head

As discussed in the previous section, there are certain cases in the modelling of rapidly varied
flows where a strict application of the depth-integrated momentum balance leads to physically
incorrect solutions and where it is better to look at the energy head H , defined in (13). This is
not a quantity that is conserved in a local balance, but for steady flows it should remain constant
along a streamline. In semi-Lagrangian schemes, this can be implemented straightforwardly using
the reconstructed streamline.

With some basic assumptions the same can be achieved with only a small modification of
the momentum conservative scheme. As we are firstly interested in constant energy solutions for
steady flows, we need only to consider the balance between the advection term and the hydrostatic
pressure term. For one-dimensional flows the discretized balance, transformed in the same way as
before to a momentum equation with depth-averaged velocities, reads

qin
h̄

u− ∗u
�x

+g
�R−�L

�x
=0 (39)

We consider a sudden raise in the bottom level at the face between the water level point �L and
�R. The flux coming from the left of the obstacle is determined by the upstream water depth hL.
Considering a water depth at the face as in (3), the flux coming over the obstacle is determined
by hR. Thus for a steady flow we have

qin=hL
∗u=qout≈hRu (40)

Subsequently we introduce a factor h̄(hL+hR)/(2hLhR) in front of the advection term. Working
out the new advection term, we obtain

h̄(hL+hR)

2hLhR

q

h̄

u− ∗u
�x

= q

(
1

2hL
+ 1

2hR

)
u− ∗u
�x

= 1

2
(∗u+u)

u− ∗u
�x

= 1

2

u2− ∗u2

�x
(41)
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With this advection term it can be easily seen that the energy head is conserved across the obstacle

ghL+ 1
2

∗u2=ghR+ 1
2u

2 (42)

Note that the factor is consistent with 1 for smooth geometries, so that the scheme is still consistent
away from the jump, only at the jump itself the scheme is no longer momentum conservative. To
avoid division by zero it is in fact better to put the inverse of the factor in front of the pressure
gradient term. In many situations the two-dimensional flow over a sudden bottom elevation, e.g. the
flow over a dike or over a weir, will be almost perpendicular to the elevation. In this case the factor
in front of the pressure gradient can also be applied to obtain constant energy solutions across
the elevation. The factor can easily be implemented as a switch that is only applied for strong
contractions in the direction of the flow. For the rest of the domain, the momentum conservative
scheme remains unmodified.

5. CARLSON’S SCHEME

The advection scheme applied in (38) can be rewritten as a three-point interpolation

un+1=(1−cx −cy)u
n+cxu

n
x +cyu

n
y (43)

with the shorthand

un =uni+1/2, j , unx =uni−1/2, j , uny =uni+1/2, j−1 (44)

and dimension-less constants cx and cy , acting as Courant numbers

cx =
(

q̄ni, j
h̄ni+1/2, j

)
�t

�x
, cy =

(
q̄ni+1/2, j−1/2

h̄ni+1/2, j

)
�t

�x
(45)

This is only stable within the triangle u,ux and uy . That is for

cx�0, cy�0 and cx +cy�1 (46)

The positivity of cx and cy is already implied by the fact that they represent incoming fluxes. The
last condition, however, may put a rather strict constraint on the time step.

The one-dimensional scheme, say cy =0, is stable only if 0�cx�1, that is, if we interpolate in
a point between un and unx . This is in the point where the characteristic intersects the t= tn-line
in the (x, t)-timenet (see Figure 5). If we interpolate at the first intersection with the lines of the
timenet, then for cx>1 we obtain an interpolation between unx and un+1

x . This gives the following
scheme:

un+1=

⎧⎪⎨
⎪⎩

(1−cx )u
n+cxu

n
x , 0�cx�1(

1− 1

cx

)
un+1
x + 1

cx
unx , cx>1

(47)

This scheme is also applied in Carlson’s Sn-method [15], see also [16, 17]. A more recent application
to a Godunov-type scheme can be found in [18, 19]. The scheme is only locally implicit. This has
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Figure 5. In the one-dimensional case, Carlson’s scheme switches between an explicit interpolation between
un and unx (top left figure) and an implicit interpolation between un+1

x and unx (bottom left figure). In the
two-dimensional case it switches between an explicit interpolation in the triangle un,unx and uny and an

implicit bilinear interpolation in the square un+1
x ,un+1

y ,unx and uny .

the advantage that the equations can be solved much faster if only the Courant violation occurs
very locally, near sharp gradients or in small cells. The explicit values are calculated directly,
whereas the implicit equations can be solved with just one sweep in each direction.

For a generalization to two dimensions, we rewrite the scheme as

un+1−un+(1−�(cx )) ·cx (un−unx )+�(cx ) ·cx (un+1−un+1
x )=0 (48)

with a varying �

�(c)=max

(
0,1− 1

c

)
(49)

If we apply this varying-� scheme, using �(cx +cy), for the two-dimensional case and collect all
un+1-terms on the left-hand side, we obtain

un+1=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1−cx −cy)u
n+cxu

n
x +cyu

n
y, cx ,cy�0 and cx +cy�1(

1− 1

cx +cy

)(
cx

cx +cy
un+1
x + cy

cx +cy
un+1
y

)

+
(

1

cx +cy

)(
cx

cx +cy
unx + cy

cx +cy
uny

)
, cx ,cy�0 and cx +cy>1

For cx +cy>1 we obtain a bilinear interpolation between unx ,u
n+1
x ,uny and u

n+1
y in the intersection of

the characteristic with the plane spanned by those four points. Hence, the scheme prescribes
an interpolation in the point where the characteristic leaves the space–time prism (Figure 5). If
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cx +cy>1 but cy�1, then we can also use the 3-point interpolation

un+1=
(
1− 1

cx +cy

)
un+1
x +

(
1−cy
cx +cy

)
unx +

(
cy

cx +cy

)
uny (50)

and similarly for cx +cy>1 and cx�1. This has the advantage of having a smaller implicit stencil,
leading to faster convergence of the sweeping algorithm.

Also the general unstructured scheme (35) can be expressed as an interpolation

un+1
f =(1−csum)unf +

incoming∑
k

faces
ck

∗uk ·n f (51)

where the summation is over faces with incoming flux, ∗uk are the full velocity vectors reconstructed
at these faces, ck are dimensionless coefficients and csum is the sum of these:

ck =�t
−�L/R

f ±k
cL/R

Qk

h̄ f AcL/R

, csum=
incoming∑

k
faces

ck (52)

This is again stable if all ck�0 (this is true because only incoming fluxes contribute) and csum�1.
For Perot’s scheme, f is itself one of the faces k with incoming flux. ∗u f in the corresponding
term is itself dependent on unf . In Appendix A it is explained, however, how we can rewrite into
an interpolation in which the total contribution from unf is given explicitly.

An unconditionally stable scheme can be derived using the varying �(csum)-scheme

un+1
f =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1−csum)unf +
∑

k ck
∗unk ·n f , ck�0 and csum�1(

1− 1

csum

)(∑
k

ck
csum

∗un+1
k ·n f

)

+ 1

csum

(∑
k

ck
csum

∗unk ·n f

)
ck�0 and csum>1

The locally implicit advection scheme can be combined with the semi-implicit scheme of Section 2
by introducing a fractional step. In the first step, the implicit equations of the advection scheme are
solved with a sweeping algorithm. The calculated advected velocities are then used as starting point
for the second step in which the rest of the terms are integrated using the semi-implicit scheme.
The use of a fractional step introduces a first-order time error but only for the few velocities for
which the advection is calculated implicitly.

6. MODIFIED CUT-CELL TECHNIQUE CREATING ORTHOGONAL GRIDS

Unstructured grids greatly improve the possibilities of dealing with complex flow domains. Most
two-dimensional unstructured grid techniques are based on triangular grids. Taking the circumcentre
as the centre of each cell, a triangular grid without any obtuse triangles meets the requirement of
an unstructured orthogonal grid. For obtuse triangles, however, the circumcentres lie outside the
cell, and in this case the face between two cells no longer lies between the two corresponding
centres causing inaccuracy and instability in the pressure gradient calculation.
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The generation of non-obtuse grids is far from trivial. Many algorithms are based on Delaunay
triangulations [20] and only provide lower bounds on the smallest angle found in the triangles.
Some non-obtuse triangulation algorithms are known [21, 22], but it is yet unclear whether they
can be combined with other quality criteria and provide enough flexibility for local refinements.
Even in non-obtuse triangulations, the circumcentres may come arbitrarily close together or even
coincide. Acute triangulations [23, 24], i.e. triangulations with all angles strictly smaller than 90◦,
are even harder to generate.

A disadvantage of finite volume methods on unstructured grids in general is the difficulty to
derive higher-order schemes. Especially in the case of unstructured staggered grids where only
arbitrary components of the velocity on arbitrary locations are given, it is difficult to reconstruct
a higher-order interpolation of the velocity field.

The Cartesian cut-cell technique is another grid technique to deal with complex boundaries (see
[25] for an overview or [26, 27] for applications to shallow water flows). One starts with an ordinary
Cartesian grid. The boundary is represented by a line segment in each cell that simply cuts off the
boundary cell. On the Cartesian cells in the interior, all standard numerical schemes available for
structured grids, including higher-order methods, can be applied. The cut-off cells, however, need
a special treatment, as their areas and the widths of their faces need to be corrected. A common
problem with this method is the occurrence of small triangles, which strains the CFL-condition.

A specific problem for schemes with the orthogonality requirement is the fact that the original
cell centres of the cut cells, after cutting off the boundary, may end up outside the domain.
The centres can be moved but then the grid is no longer orthogonal, and the calculation of the
pressure gradient needs to be modified. Our approach aims at restoring orthogonality by a further
sub-division of the cut cells.

Cutting off a boundary with a straight line divides the rectangular Cartesian cells in triangles,
quadrilaterals or pentagons. The resulting triangles are always orthogonal. This means that its
circumcentre lies exactly on the boundary segment. The cut-off quadrilaterals have two right angles.
There is always one way of dividing those in two non-obtuse triangles (Figure 6).

For the pentagons in most cases it is possible to draw a line segment perpendicular to and
starting at the boundary face to the vertex opposite of this face. This divides the pentagon in two
quadrilaterals in which one can find centres that meet the orthogonality requirement for all three
interior faces. In cases in which such a line segment perpendicular to the boundary face cannot be
found, it is also not possible to divide the pentagon in three acute triangles. An acute triangulation
exists [24] but may lead to excessively small triangles. If we drop the orthogonality requirement

Figure 6. Quadrilateral divided into two triangles. Pentagon divided into two quadrilaterals (in the right
one it is not possible to find an orthogonal solution).
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Figure 7. Example of cut-cell grid with quadtree refinement.

and divide the pentagon with a line segment between the middle of the boundary face and the
opposite vertex, the pressure gradient on this new face can still be calculated using information
of the boundary condition. For instance for a closed boundary, the pressure gradient should be
parallel to the boundary. This is the same direction as the vector between the two cell centres.
Hence, the complete pressure gradient vector can be calculated out of the pressure difference in the
centres and projected into the face normal direction. Thus, we preserve the symmetry and positive
definiteness of the linear system.

This technique provides a very efficient way of generating a grid that very accurately approx-
imates the boundaries. In many inundation calculations, obstacles such as large buildings occur.
They create holes in the flow domain, that are in general difficult to incorporate in the grid using
other techniques. The fact that the grid remains Cartesian in the interior makes it possible to apply
higher-order methods there. The problem with small triangles can be solved using the locally
implicit scheme described in the previous section. Grid refinement can be implemented using
quadtree refinement of the Cartesian grid in combination with some extra triangles in the transition
areas to maintain orthogonality (see Figure 7).

7. TEST CASES

7.1. One-dimensional flow in an oblique channel

Very simple but relevant tests can be performed by studying one-dimensional flows in a straight
channel that has been rotated with respect to the Cartesian-grid orientation. The channel is approx-
imated with a cut-cell grid (see Figure 9). In this domain one can compare several problems for
which the analytical solution is known with the numerical result. Moreover, we can compare with
the result for a Cartesian staircase approximation of the channel.

7.1.1. Hydraulic jump after sill. This example is a steady-state problem for a channel of 100m
rotated under an angle of 37◦. In the middle of the channel, there is a sill with a crest of 1m
height and a length of 10m. The slopes have a tangent of 0.2. At inflow a depth-integrated velocity
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Figure 8. Numerical result of hydraulic jump after sill on coarse grid of �x=2.
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Figure 9. Straight channel under angle of 30◦ with respect to the grid orientation, approximated with
cut-cell grid (left, �x=1) and Cartesian grid (right, �x=0.7).

of 1m2/s is prescribed and the downstream water level is kept at 1m. Downstream of the sill, a
hydraulic jump will occur. For this problem, a cut-cell grid with Cartesian cells of 2m is employed.
The smallest cell in the grid has an area of 0.01m2, even smaller cells were removed (Figure 8).

Comparing the numerical results of the scheme with the analytical solution, some first-order
errors are visible near the shock above the crest. Better results could be achieved implementing
more accurate fluxes for the divergence and advective terms of the scheme combined with flux
limiters. The main flow characteristics (upstream water level, location and depth of the jump),
however, are accurately represented using only a few cells to represent the steep bottom rise. This
makes the scheme highly effective in flooding situations where various steep bottom features need
to be incorporated using as little resolution as possible.

If the jump velocities of 5.2ms−1 occur; high Courant numbers can be expected especially for
the smaller cells. In Table I, however, it is shown that even for larger time steps we obtain accurate
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Table I. Numerical results for hydraulic jump after sill with different time steps.

�t Implicit equations Iterations Upstream error

0.01 0 1 0.0056
0.1 2 2 0.0060
0.2 8 3 0.0068
0.5 39 7 0.0077
1.0 95 15 0.0093
2.0 275 20 0.0470
5.0 386 34 0.1652

10 387 39 0.2772

The number of implicit equations is equal to the number of faces at which the Courant
number is greater than 1. Also shown is the number of Gauss–Seidel iterations needed
to solve the equations and the error in the upstream water level.
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Figure 10. Dam break over wet bed. Numerical results (dots) compared with analytical solution (straight
line). Top left: cut-cell grid, �x=1; top right: Cartesian grid, �x=0.7; bottom left and right: cut-cell

and Cartesian grids, �x=0.1.
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results. This is achieved using the locally implicit time integration of Section 5. From the table
we can read that as long as the number of Courant violations is small, the required extra work is
limited.

7.1.2. Dam break over wet bed. A dam break is calculated in a channel of 50m rotated under
an angle of 30◦. The upstream water level is 1m and the wet bed level downstream is at 0.1m.
At t=0 the shock starts at x=25 with zero initial velocity. Shown is the numerical solution after
5 s. Already on a relatively coarse cut-cell grid good results are achieved, with a correct shock
speed and height of the bore. On a Cartesian staircase grid with slightly more cells (both grids
are given in Figure 9), the results are considerably worse. On a finer cut-cell grid, the numerical
solution converges to the analytical solution, whereas the numerical solution on a Cartesian staircase
grid, again with roughly the same number of cells, keeps showing distortions near the boundary
(Figures 10 and 11).

7.2. Comparison of Perot and Wenneker’s schemes

Two variants of the discretization of the momentum balance for unstructured grids have been
discussed based on either Perot’s or Wenneker’s scheme. The advantage of Perot’s scheme is that
its conservation properties can be proven in a rigorous way. A disadvantage is that because the
weighting of the left and right cells contribution to the advection at the face is based on the
distance between circumcentres and faces, the weighting factors become negative in the case of
circumcentres that lie outside the cell. This leads to instabilities in the scheme. For Wenneker’s
scheme, although circumcentres outside of their cells may hamper the accuracy, this does not have
a direct consequence for the stability of the scheme.

As we have seen it is not straightforward to generate grids with all circumcentres strictly within
the cell. The modified cut-cell technique introduced in the previous section provides a mechanism
to generate such grids. Because the grid is mostly Cartesian in the interior, this does not provide a
good comparison between the unstructured schemes based on Perot and Wenneker. In fact the tests
of the previous section that uses Wenneker’s scheme near the boundary hardly show any difference
using Perot’s scheme. A better comparison can be performed on a triangular grid in which all
triangles are acute to avoid instabilities for Perot’s scheme. The same tests of the previous section
in a rectangular channel have been performed this time with an acute triangulation of which a part
is shown in Figure 12. The results are shown in Table II. As we can see the scheme based on
Perot’s scheme performs better for the hydraulic jump and the dam break with wet bed, whereas
Wenneker’s scheme performs slightly better for the dam break with dry bed. In general the observed
differences between the two schemes were small. Because of the practical restrictions for the grid
of the Perot scheme, all other tests in this section have been performed using Wenneker’s scheme
for advection.

7.3. Oblique hydraulic jump

The oblique hydraulic jump, which occurs in supercritical flow in converging channels, is a well-
known test case for shock-capturing schemes [8, 28]. It gives a clear example of the ease of
use the proposed cut-cell technique. Upstream supercritical boundary conditions of h=1m and
u=8.57ms−1 are given for a domain with a converging wall under an angle of 8.95◦ with the
incoming stream. This creates an oblique hydraulic jump, for which the angle with the upstream
flow of 30◦, and the water level h=1.5m and velocity u=7.96ms−1 downstream of the jump can
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Figure 11. Dam break over dry bed. Numerical results (dots) compared with analytical solution (straight
line). Left: cut-cell grid, �x=1; right: cut-cell grid, �x=0.1.
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Figure 12. Part of the grid on which comparisons between Perot’s and Wenneker’s schemes were performed.

Table II. Comparison numerical results using Perot’s or Wenneker’s scheme.

Perot’s scheme Wenneker’s scheme

Upstream error hydraulic jump 0.0028 0.0089
L2-error dam break over wet bed after 8 s 0.2555 0.3116
L2-error dam break over wet bed after 15 s 0.2154 0.3138
L2-error dam break over dry bed after 4 s 0.1645 0.1438
L2-error dam break over dry bed after 8 s 0.1551 0.1240

be derived analytically [29]. Shown in Figure 13 are the results for the scheme as described in
this paper. Similar to the one-dimensional hydraulic jump after a sill described before, the results
show a typical first-order approximation of the shock. This also leads to slightly higher velocities
after the shock 7.99–8.03ms−1, but again the main flow features are accurately represented—a
water level of h=1.499m, and the shock angle can be seen in Figure 13 to be very close to the
predicted 30◦.

7.4. River bend flow

A clear example of the error introduced by staircase-like boundaries can be seen in the modelling
of the flow in a river bend. We study a U-shaped flume with centreline radius of 4.25m and
with 6.00m long straight tangent reaches (Figure 14). Measurements and computational results,
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Figure 13. Oblique hydraulic jump. In the right figure the water level contour lines of the numerical
solution are drawn. The dashed line indicates the shock position according to the analytical solution.

–6 –4 –2 0 2 4 6
–6

–4

–2

0

2

4

6

–6 –4 –2 0 2 4 6
–6

–4

–2

0

2

4

6

Figure 14. Example of cut-cell grid (left, �x=0.5m) and Cartesian grid
(right, �x=0.34m) of U-shaped flume.

using curvilinear coordinates and stationary equations, can be found in [30]. The computational
results are used as a reference and compared with the numerical results on a cut-cell grid and a
pure Cartesian grid of ±4500 cells (see Figure 15). The applied bottom roughness with Chezy
C=57m1/2/s causes a 10% elevation of the water surface upstream. This is reproduced accurately
by the cut-cell computation. The pure Cartesian computation, however, shows an elevation of
26.7% which indicates a large energy loss caused by artificial boundary effects.

7.5. Circular dam break

The circular dam break [7] provides an interesting two-dimensional test case for which the exact
solutions can be analysed by projection in the radial direction. A cylinder of water with an initial
height of 2.5m is released in a surrounding domain with initial water height of 0.5m. The results
are analysed before the diverging bore reaches the closed boundaries of the domain. For this case
the scheme of this paper was tested on a completely triangular mesh. In Figure 16 the results are
compared with those on a structured mesh. It can be seen that the results are very similar. Both

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:183–212
DOI: 10.1002/fld



CONSERVATIVE UNSTRUCTURED SCHEME FOR RAPIDLY VARIED FLOWS 207

–0.02

–0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

upstream tangent bend downstream tangent

centre line

0.25 m from outerbank

0.25 m from inner bank0.05 m from inner bank

0.05 m from outerbank

–0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

upstream tangent bend downstream tangent

0.25 m from outerbank

0.05 m from outerbankcentre line
0.25 m from inner bank

0.05 m from inner bank
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Figure 16. Numerical results of circular dam break test. Profile along y=0-line. Top two figures give water
surface and velocity after 3.5 s using Cartesian grid. Middle two figures give the same for a triangular
grid. Bottom figures give the water surface using triangular grid at two other times t=0.4 and 4.7 s.
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results accurately represent the semi-analytical radial one-dimensional solution given in [7]. The
Cartesian mesh solution gives in fact a slightly better representation at the exact shock location,
which is probably due to the fact that the Cartesian mesh is aligned with the cross section along the
x-axis that is given in the figure. Shock speeds, and water levels and velocities of the in-between
states are, however, very close to the reference solution (errors less than 1%).

8. CONCLUSIONS

A robust and efficient unstructured method for the numerical simulation of rapidly varied flows
has been presented. The scheme guarantees mass conservation, non-negative water depths, and
provides by choice, based on physical consideration, either momentum conservation or constancy
of energy head. Owing to the guarantee for non-negative water depths, no special flooding and
drying procedures need to be implemented. The appropriate application of momentum or energy
conservation is needed to accurately model the flow near steep bottom gradients and propagating
shock waves.

The ability of unstructured grids to accurately represent complex boundaries is especially useful
in the complicated geometry of a flooded urban area. To enable an efficient solution of the system of
equations, an orthogonality condition has to be put on the grid. This complicates the straightforward
application of triangular grids. The hybrid grid approach proposed in this paper offers boundary
conformance while respecting the orthogonality condition. The small-cell problem in Cartesian
cut-cell approaches can be solved with the locally implicit time integration of Section 5. This
scheme also improves the efficiency of the scheme for rapidly varied flows where high velocities
may occur very locally.

The efficiency and robustness of the method allow application to large-scale inundation problems.
Although more accurate results can be obtained using higher-order methods based on Riemann
solvers, and with three-dimensional non-hydrostatic models, the main flow properties of rapidly
varied flows, such as jumps and shock speeds, are accurately represented with this scheme, while
maintaining efficiency through the semi-implicit staggered approach.

APPENDIX A: ANALYSIS OF THE FLUX TERMS IN PEROT’S SCHEME

To show that in (34) the outgoing fluxes may be omitted without changing the local momentum
balance, we need to go back to the cell-based momentum balance. Although the relationship
q f = h̄ f u f does not imply qc=hcuc for the reconstructed cell-based vectors qc and uc, we can
derive the following relation:

∑
c

cells
Acqc=∑ f

faces

�x f l f q f n f =∑
f

faces

(�xcLf hcL +�xcRf hcR)u f n f

=∑
c

cells
hc
∑

f
cell
faces

Ac
f u f n f

=∑
c

cells
Achcuc (A1)
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Now for the local acceleration and advection terms in the cell-based momentum balance we can
express

∑
c

cells
Ac

dqc
dt

+Acac =∑
c

cells

⎧⎪⎨
⎪⎩Achc

duc
dt

+Ac
dhc
dt

uc+∑ f
cell
faces

±c
f Q f

∗u f

⎫⎪⎬
⎪⎭

=∑
c

cells

⎧⎪⎨
⎪⎩Achc

duc
dt

+∑ f
cell
faces

±c
f Q f (

∗u f −uc)

⎫⎪⎬
⎪⎭ (A2)

In this form it is clear that the outgoing fluxes ±c
f Q f >0 drop out. Transforming back to a

face-based momentum balance this means that in (34) the outgoing flux terms can be dropped
without changing the corresponding cell-based momentum balance. Note, however, that the flux
through face f itself in (34) does not cancel in adding the left and right advection contribution,
as it does in Wenneker’s scheme. The upwind incoming velocity ∗u f in the corresponding term
depends on u f itself. Suppose i and j are the other two faces in the upwind cell. For the unique
vector ui j such that ui j ·ni =ui and ui j ·n j =u j , we may express (assuming i and j have inward
pointing normals)

ui j ·n f = li ui +l j u j

l f
(A3)

This follows from considering the divergence of ui j as a constant over the triangle. Furthermore,
in Figure A1 we can see the following identity:

�xci ni ·n f =�xcjn j ·n f = Ac−�xcf l f

l f
(A4)

Therefore in the upwind cell c with faces f, i and j , we can express

∗u f ·n f =uc ·n f = �xcf l f u f +(�xci li uini +�xcj l j u j ) ·n f

Ac

= �xcf l f u f +ui j ·n f (Ac−�xcf l f )

Ac

= �xcf l f

Ac
u f +

(
1− �xcf l f

Ac

)
ui j ·n f (A5)

This means that in the interpolation of (51) we can explicitly write out the contribution from unf
by

un+1
f = (1−cs)u

n
f +

incoming∑
k �= f

faces

ck
∗uk ·n f +c f

�xcf l f

Ac
unf +c f

(
1− �xcf l f

Ac

)
ui j ·n f

= (1−c′
s)u

n
f +

incoming∑
k �= f

faces

ck
∗uk ·n f +ci jui j ·n f (A6)
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Figure A1. From this triangle with faces f, i and j we can read off Equation (A4).

where ci j and c′
s are given by (note that always: 0��xcf l f �Ac)

ci j =
(
1− �xcf l f

Ac

)
c f , c′

s =
incoming∑

k �= f
faces

ck+ci j (A7)

The locally implicit scheme is then given by

un+1
f =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1−c′
s)u

n
f +
∑

k ck
∗unk ·n f +ci juni j ·n f , ck�0 and c′

s�1(
1− 1

c′
s

)(∑
k
ck
c′
s

∗un+1
k ·n f + ci j

c′
s
un+1
i j ·n f

)

+ 1

c′
s

(∑
k
ck
c′
s

∗unk ·n f + ci j
c′
s
uni j ·n f

)
, ck�0 and c′

s>1
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13. Nujić M. Efficient implementation of non-oscillatory schemes for the computation of free-surface flows. Journal
of Hydraulic Research 1995; 33:101–111.

14. Lax P, Wendroff B. System of conservation laws. Communications on Pure and Applied Mathematics 1960;
13:217–237.

15. Carlson BG. Solution of the transport equation by Sn approximations. Technical Report LA-1891, Los Alamos
Scientific Laboratory, 1955.

16. Keller HB, Wendroff B. On the formulation and analysis of numerical methods for the time dependent transport
equations. Communications on Pure and Applied Mathematics 1957; 10:567–582.

17. Richtmyer RD, Morton KW. Difference Methods for Initial Value Problems. Interscience: New York, 1967.
18. Collins JP, Colella P, Glaz HM. An implicit–explicit Eulerian Godunov scheme for compressible flow. Journal

of Computational Physics 1995; 116:195–211.
19. O’Rourke PJ, Sahota MS. A variable explicit/implicit numerical method for calculating advection on unstructured

meshes. Journal of Computational Physics 1998; 143:312–345.
20. Shewchuk JR. Delaunay refinement algorithms for triangular mesh generation. Computational Geometry 2002;

22:21–74.
21. Baker BS, Grosse E, Rafferty CS. Nonobtuse triangulation of polygons. Discrete and Computational Geometry

1988; 3:147–168.
22. Bern M, Mitchell S, Ruppert J. Linear-size nonobtuse triangulation of polygons. SCG ’94: Proceedings of the

Tenth Annual Symposium on Computational Geometry, New York, NY, U.S.A. ACM: New York, 1994; 221–230.
23. Gerver JL. The dissection of a polygon into nearly equilateral triangles. Geometriae Dedicata (Historical Archive)

1984; 16:93–106.
24. Maehara H. Acute triangulations of polygons. European Journal of Combinatorics 2002; 23:45–55.
25. Ingram DM, Causon DM, Mingham CG. Developments in Cartesian cut cell methods. Mathematics and Computers

in Simulation 2003; 61:561–572.
26. Causon DM, Ingram DM, Mingham CG, Yang G, Pearson RV. Calculation of shallow water flows using a

Cartesian cut cell approach. Advances in Water Resources 2000; 23:545–562.
27. Rosatti G, Cesari D, Bonaventura L. Semi-implicit, semi-Lagrangian modelling for environmental problems on

staggered cartesian grids with cut cells. Journal of Computational Physics 2005; 204:353–377.
28. Wang J-W, Liu R-X. A comparative study of finite volume methods on unstructured meshes for simulation of

2d shallow water wave problems. Mathematics and Computers in Simulation 2000; 53:171–184.
29. Hager WH, Schwalt M, Jimenez O, Chaudry MH. Supercritical flow near an abrupt wall deflection. Journal of

Hydraulic Research 1994; 32:103–118.
30. de Vriend HJ. Mathematical-model of steady flow in curved shallow channels. Journal of Hydraulic Research

1977; 15:37–54.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:183–212
DOI: 10.1002/fld


